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Recently it has been shown analytically that electric currents in a random-diode network are distributed in a
multifractal mannefO. Stenull and H. K. Janssen, Europhys. LBf, 691 (2001)]. In the present paper we
investigate the multifractal properties of a random diode network at the critical point by numerical simulations.
We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for
the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a
particularly good candidate for a possible experimental realization of directed percolation.
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Directed percolatioDP) is a simple model for directed distinguished direction scales &s~|p—p.| "I, while the
connectivity in a random mediufd,2]. It differs from ordi-  correlation length perpendicular to this direction diverges as
nary isotropic percolation by the additional constraint thaté, ~|p—pc|~"*. The exponents andv, are different since
activity is restricted to percolate along a distinguished directhe process is Markovian in parallel direction while it is un-
tion in space. Interpreting this direction as a temporal degreéirected in the perpendicu! lar degrees of freedom. In a two-
of freedom, directed percolation may also be viewed as #0p approximation, these exponents are giveri4§|
reaction-diffusion proces#\«—2A, A—0. In this process

particle creation and removal compete with one another, B=1—¢€/6—0.01128>+0(€3),
leading to a nonequilibrium phase transition form an active
(percolating into an absorbingnonpercolating phase. Be- vj=1+ €/12+0.022 382+ 0(&%), (1)

cause of its robustness, DP plays the role of a standard uni-
versality class of nonequilibrium phase transitions which
may be of a similar importance as the Ising model in equi-
librium statistical mechanics.

v, =1/2+ €/16+0.021 10e®+ O(€°),

dWheree=4—d. The exponents have also been estimated by

One of the simplest realizations of DP is directed bon ; ical method Table)L The triplet of
percolation on a(tilted) hypercubic lattice. In this model various numerical methodsee fable)l 1he triplet of €xpo-
ents labels the wuniversality class of

neighboring sites are connected by bonds which are conducg—Jr 1-di B.y ] Vl)l DP while oth itical t
ing with probability p and impermeable otherwise. In con- -dimensional F, while other critical €xponents are usu-
- : . e.;1lly related to these standard exponents by simple scaling

relations. This type of scaling invariance, where only a finite

direction and may be realized by randomly distributed di- . - .
odes, as shown in Fig. 1. Obviously, the effective conductiv-numb('}r of mdgpendent exponents is involved, is referred to
' ' ssimple scaling

ity of the system along the distinguished direction depend§1 . . . :
Let us now consider an electric current running on a di-

on the percolation probabilitg. If p is small, all clusters of tod lati lust ding to Kirchhoff's | B
connected sites are finite so that the conductivity vanishes jpcted percolation cluster according 1o KIFChholl's fJaws. By

the limit of large distances. On the other hand) éxceeds a introducing such a current the theory is extended by an ad-
certain critical thresholg., there is a finite probability to
find a directed path between two points, leading to a finite PN
resistance when averaged over many independent samples. XQ
At the critical thresholp=p., the system undergoes a con- X
tinuous phase transition where clusters of conducting paths S T e g
display a fractal structure. In this case the currents running x T
on the cluster are distributed in a nontrivial way. o
The DP transition can be described by field-theoretic
renormalization group method8,4]. In this framework the
critical behavior near the transition can be characterized by
simple scaling laws which involve three independent critical
exponents. The order parameter in the percolating phase is
the density of sites belonging to an infinite cluster or—using
the reaction-diffusion language—the density of active sites. F|G. 1. (1+1)-dimensional directed bond percolation as a
Approaching the transition, this density scales @s(p  random-diode network on a tilted square lattice. The figure shows a
—pc)?, whereg is the critical exponent associated with the realization of randomly distributed diodes with a conducting path
order parameter. Similarly, the correlation length along thefrom x to x’.
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TABLE |. Estimates for the critical exponents of DP.

Exponent d=3 d=2 d=1
B 0.81(1) 0.5834) 0.276 4868)
Y 1.1085) 1.2956) 1.733 8476)
v, 0.5815) 0.7334) 1.096 5844)

ditional physical concept with nontrivial properties. In fact,
even though the cluster itself is characterized by simple scal- FIG. 2. Example of the current distribution on a backbone run-
ing laws, the currenten the cluster turn out to be distributed ning fromx to x’. The thickness of the bonds represents the inten-
in a multifractal manner, meaning that all moments scalesity of the current.

with individual exponents which cannot be related to the .
standard exponents by simple scaling laws. In the case d¥here the sum runs over all bondsf the backbone while
isotropic percolation, this phenomenon was first conjectureds and I denote the current passing bobdand the total
by Rammalet al.[6] as well as by deArcangelet al.[7]. In curre_nt, respec_:tlvely. Each of these_moments has a specific
the meantime these results have been substantiated by fiel@ysical meaning. For exampll, is just the total number
theoretic renormalization-group studigg9] and numerical Of bonds of the backbone whilel, is the total resistance
simulations[6,10,11. Recently, Stenull and Janssgi?] in-  between the two points in units & M, is the second cu-
vestigated the directed case. By employing field-theoretiénulant of the resistance fluctuations and may be considered
methods they determined the critical exponents of the moas @ measure of the noise in a given realization. Finily,
ments of the current distribution. Their results clearly indi-iS the number of so-called red bonds which carry the full
cate multifractality. The purpose of the present paper is t¢urrentl. These bonds play a special role since they are
verify these predictions quantitatively by extensive numeri-shared by all possible paths. At criticality the moments obey
cal simulations. To this end we analyze a random-diode ne2 power-lan{12]

work as shown in Fig. 1, which is a special case of the model

considered if12]. Again we would like to stress that multi- M/~(x|i —x”)V’/’V\I. 3
fractality is not observed as long as one is concerned exclu-

sively with the underlying DP process. An additional pro- Multifractal behavior manifests itself in a nonlinear depen-
cess, here the transport of electrical currents, is necessary fdence of the exponenig, on their index/. The exponents
the emergence of multifractality. ¥, just as the geometrical exponents compiled in &g,

The moments of the current distribution in a are known in a two-loop approximation. Thus, at least in
d+ 1-dimensional DP process are defined as follows. Let ugrinciple, we can gather the expansion for the exponents
denote byx the coordinate along the distinguished direction, /| from the literature. Thig expansion, however, would
(=time) and byx, the vector ofd perpendicular coordinates hardly be useful for comparison to our numerical data be-
(=space. An important quantity in the theory of DP is the cause it is valid only asymptotically in the vicinity af,
pair-connectedness functid®(x;,x, ;x| ,X; ), which is the ~ =4. To produce reliable predictions fdr=3 or evend=2
probability to find a conducting path running from the point the e expansion has to be improved by incorporating addi-
(X),x,) to the point &{ ,x] ). The union of all possible paths tional inforr_nation. Here, we carry out a so-called r_ational
in a given realization of conducting and nonconducting@pproximation. To be specific, we incorporate the rigorous
bonds is called thebackboneof the correlation function. featurey, /v (d=0)=1 by supplementing the expansion
Note that the backbone is invariant under reversal of all diwith an appropriate third-order term. The so-obtained result
odes. In the field-theoretic framework this invariance isreads:
known as the so-called rapidity reversal symmetry.

We now assume the diodes to be ideal in the sense that ¢,
they are perfectly isolating if the applied voltage is negative TH: 1-e(4-e)ja te
while they have a fixed resistanBaf the voltage is positive.

If we apply an external voltage at the two poinis where thea,, b,, andc, are/-dependent coefficients tak-
=(x,x,) and x’=(x|i ,X,) there will be a current running ing the values listed in Table II.

on the backbone which can be computed by solving Kirch-

hoff’s laws. Obviously the currents are distributed in a non- TABLE IIl. The coefficientsa,, b,, and c, appearing in
trivial way, especially when the backbone consists of manyEq. (4).

nested loops, as shown in Fig. 2. This current distribution has

+0(€%), (4)

b | 4
/+C/n§

multifractal properties which can be studied by considering” 0 1 2 3 4
the moments 1 1 2 a1 127
a, — 18 96 384 1536 6144

b 109 115 149053 11739503 23399081351

/ 13824 27648 19906560 1337720832 2476694568960

161 47 211 491 17377
M, = Z (Ip/1 )2/, (2 % — 5912 13824 110592 ~ 1769472 ~ 9437184
b
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10°E . — . — g TABLE Ill. Numerical estimates of the critical exponents.
i 1 Exponent d=3 d=2 d=1
10°% E Yol v 1.102) 1.243) 1.323)
F ] nly 0.951) 0.892) 0.822)
d=3 ' Paly| 0.921) 0.81(3) 0.673)
M 10°F E sl 0.91(1) 0.7903) 0.633)
§ ] alv| 0.91(1) 0.783) 0.623)
- =2 E
101;— E
g 3 assuming that the errors caused by the iteration procedure are
d=1 | much smaller than the statistical and finite-size errors gener-
10 i L ated by the DP process itself.
1 10 100

In the simulations we observe that the average size of the
backbone increases rapidly wit&ﬂ—x”, especially in 31

FIG. 3. Simulation results for the momenits, as a function of ~ dimensions. While the numerical effort for generating con-
time in 1+1, 2+1, and 3+-1 dimensions. The data points for-2  ducting backbones between two given points plays a minor
and 3t+1 dimensions are shifted vertically by a factor of 10 and role, the algorithm is mainly limited by the CPU time needed
100, respectively. Each group of lines shows the momentdor the dynamical approximation and by the memory capac-

t

Mg, ...,M5 from top to bottom. The data points fdf, and Mg ity for storing the configuration of the backbone, the cur-
are almost identical. rents, and the voltages. Because of these limitations, we
could only go up to distances of —x <75 in 3+1, 2+1,

In order to estimate the exponents numerically, we deterand 1+1 dimensions. Clearly, in this limited range correc-
mine the current distribution averaging over an ensemble ofions to scaling still play an important role. Nevertheless, we
5000 independent realizations of a conducting backbone ifind that the moments exhibit very clean power laigse
3+1, 2+1, and 11 dimensions. In principle the current Fig. 3), which allows us to estimate the critical exponesjs
distribution can be computed by solving Kirchhoff’s laws at in the limit x| —x —c by standard extrapolation techniques.
all nodes of the backbone. In the case of isotropic percolalhese estimates are summarized in Table IlI.
tion, where the network consists only of resistors, one ob- Figure 4 shows the field-theoretic estimates as given in
tains a set of linear equations which can be solved exactly. Ifd. (4) compared to the numerical results. The error bars
the present case of a diode-resistor network, however, thi@clude the statistical error of the simulation combined with
resulting equations areonlinear making it impossible to the expected error of the extrapolation procedure. 13
compute the currents analytically. Thus, in order to computdlimensions we find excellent agreement. The numerical val-
the currents, we have to apply an iterative approximation
procedure. To this end each site of the backbone network is

connected to a grounded capaci®©r For a given set of 1.2
voltages at the lattice sites, we can compute the actual dif- 1.1
ference between incoming and outgoing currents. This dif- ﬁ 1
ference then changes the voltage of the capacitor at bige Y .
0.9 : . ; B
0.8 ¢ } ’
dau; 1
d_tl = E(I incom.™ | outgo)- 5 0 1 ? 3 4

After sufficiently long time this nonlinear dynamical sys- 11 *
tem reaches a stationary state where incoming and outgoing " 1.05
currents balance each other. Therefore, by iterating(&qg. Bl 1
the stationary current distribution can be approximated accu- Vi
rately, mainly limited by the available CPU time and the 0.95 ¥
precision of floating-point arithmetics. Moreover, the conver- 0.9 L] ¥ #
gence during the iteration procedure can be controlled easily ~0 1 D) 3 4
by monitoring the quantity®,|Al,|, which should tend to ]

zero as the stationary state is approached. Using Newton’s

iteration scheme, this quantity actually decreases until it FiG. 4. Comparison of simulation and field theory foe 2
reaches a value of about 1¥, which is essentially deter- (top) andd=3 (bottom. The field-theoretic results are indicated by
mined by the limited machine precision. At this point we squares. The numerical ones are symbolized by diamonds with error
stop the iteration procedure and compute the momkhts  bars.
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ues and the field-theoretic predictions almost coincide. Asimulations. Our findings confirm recent field-theoretic re-
expected, the agreement is less pronounced+in Bimen-  sults, supporting that currents running on a critical DP cluster
sions. The analytic estimates lie slightly outside the erroindeed show multifractal behavior.

bars of the simulations. Though not quantitatively correct, We would like to point out that a random-diode network
field theory yet predicts the right shape of the dependence dight be a good candidate for an experimental realization of
y,Ivj on /. In 1+1 dimensions, the field theory fails to directed percolation. In particular the total resistaieis
predict the numerical values of the multifractal exponents2@Sy to measure. In an experimental realization various ide-
accurately. We therefore refrain from showing the respectivélized assumptions of the model shown in Fig. 1 can be
graph. All in all, our simulations support the validity of the relaxed. For gxample, not aII'd|odes ”e‘?d.t" be. polarlzed
field-theoretic results, at least for dimensions to that ¢he along the distinguished direction, rather it is sufficient for

. : : . . hem to bepreferentially orientedn a statistical sense. In
expansion can'be continued re.,-hably.'Ou.r S|mulat|on§ C!e""m}addition, the resistance of conducting diodes may be stochas-
confirm the existence of multifractality in current distribu-

. : tically distributed. Nevertheless the critical exponents of
tions running on DP cIusFers. . such a system at the transition are expected to be the same as
As in the field-theoretic case, we can check the consis, pp Even inhomogeneities, which cannot be avoided in
tency of our results. For example, as showrj1@], the ze- 5y experiment, are not expected to play a role since they
roth moment in a ¢+ 1)-dimensional system, which is just \ouid result into arannealechoise which is irrelevant under

the mass of the backbone, can be eXpressed in terms of tlﬂ@norma"zaﬂon_group transformatiomsee Ref[14]) Be-

backbone dimensioDg=d+1—24/v, by cause of these favorable properties, random-diode networks
are particularly suitable for a possible experimental realiza-
po=v,(Dg—1+2), (6)  tion of directed percolation. It should be emphasized that so

_ . : . far no experiment is known where the critical exponents of
wherez=, /v, . Using the values listed in Table I, we ob- iracteq percolation could be verified in a reliable way
tain for /v the values 1.11 in three, 1.23 in two, and 514,153. Therefore, the experimental realization of a random-

1.307 in one dimension, respectively. These values are ijoqe network would be a particularly challenging task.
perfect agreement with the estimates listed in Table IlIl. We

also note that for increasing the estimates fory, tend to H.K.J. acknowledges the support by the Sonderfor-
the predicted valug..,= 1 which describes the scaling of red schungsbereich 237 “Unordnung und grof3e Fluktuationen”
bonds[13]. of the Deutsche Forschungsgemeinschaft. O.S. is grateful for

To summarize, we have studied the current distribution irnthe support by the Emmy-Noether-Programm of the Deut-
a random-diode network at the critical point by numericalsche Forschungsgemeinschaft.
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