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Multifractal current distribution in random-diode networks
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Recently it has been shown analytically that electric currents in a random-diode network are distributed in a
multifractal manner@O. Stenull and H. K. Janssen, Europhys. Lett.55, 691 ~2001!#. In the present paper we
investigate the multifractal properties of a random diode network at the critical point by numerical simulations.
We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for
the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a
particularly good candidate for a possible experimental realization of directed percolation.
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Directed percolation~DP! is a simple model for directed
connectivity in a random medium@1,2#. It differs from ordi-
nary isotropic percolation by the additional constraint th
activity is restricted to percolate along a distinguished dir
tion in space. Interpreting this direction as a temporal deg
of freedom, directed percolation may also be viewed a
reaction-diffusion processA↔2A, A→0”. In this process
particle creation and removal compete with one anoth
leading to a nonequilibrium phase transition form an act
~percolating! into an absorbing~nonpercolating! phase. Be-
cause of its robustness, DP plays the role of a standard
versality class of nonequilibrium phase transitions wh
may be of a similar importance as the Ising model in eq
librium statistical mechanics.

One of the simplest realizations of DP is directed bo
percolation on a~tilted! hypercubic lattice. In this mode
neighboring sites are connected by bonds which are cond
ing with probability p and impermeable otherwise. In con
trast to isotropic percolation, the bonds conduct only in o
direction and may be realized by randomly distributed
odes, as shown in Fig. 1. Obviously, the effective conduc
ity of the system along the distinguished direction depe
on the percolation probabilityp. If p is small, all clusters of
connected sites are finite so that the conductivity vanishe
the limit of large distances. On the other hand, ifp exceeds a
certain critical thresholdpc , there is a finite probability to
find a directed path between two points, leading to a fin
resistance when averaged over many independent sam
At the critical thresholdp5pc , the system undergoes a co
tinuous phase transition where clusters of conducting p
display a fractal structure. In this case the currents runn
on the cluster are distributed in a nontrivial way.

The DP transition can be described by field-theore
renormalization group methods@3,4#. In this framework the
critical behavior near the transition can be characterized
simple scaling laws which involve three independent criti
exponents. The order parameter in the percolating phas
the density of sites belonging to an infinite cluster or—us
the reaction-diffusion language—the density of active sit
Approaching the transition, this density scales asr;(p
2pc)

b, whereb is the critical exponent associated with th
order parameter. Similarly, the correlation length along
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distinguished direction scales asj i;up2pcu2n i, while the
correlation length perpendicular to this direction diverges
j';up2pcu2n'. The exponentsn i andn' are different since
the process is Markovian in parallel direction while it is u
directed in the perpendicu! lar degrees of freedom. In a tw
loop approximation, these exponents are given by@4,5#

b512e/620.011 28e21O~e3!,

n i511e/1210.022 38e21O~e3!, ~1!

n'51/21e/1610.021 10e21O~e3!,

wheree542d. The exponents have also been estimated
various numerical methods~see Table I!. The triplet of expo-
nents (b,n i ,n') labels the universality class o
d11-dimensional DP, while other critical exponents are u
ally related to these standard exponents by simple sca
relations. This type of scaling invariance, where only a fin
number of independent exponents is involved, is referred
assimple scaling.

Let us now consider an electric current running on a
rected percolation cluster according to Kirchhoff’s laws. B
introducing such a current the theory is extended by an

FIG. 1. ~111!-dimensional directed bond percolation as
random-diode network on a tilted square lattice. The figure show
realization of randomly distributed diodes with a conducting p
from x to x8.
©2002 The American Physical Society04-1



t,
ca
d
le
he
e
re

fie

et
o

di
t

ri
ne
d
-
cl
o-
y

a
t u
on
s
e

int
s
ng

d
is

th
iv

ch
n
n

ha
in

cific

red

ull
are
ey

n-

in
s

be-

di-
al
us

ult

-

n-
en-

RAPID COMMUNICATIONS

HAYE HINRICHSEN, OLAF STENULL, AND HANS-KARL JANSSEN PHYSICAL REVIEW E65 045104~R!
ditional physical concept with nontrivial properties. In fac
even though the cluster itself is characterized by simple s
ing laws, the currentson the cluster turn out to be distribute
in a multifractal manner, meaning that all moments sca
with individual exponents which cannot be related to t
standard exponents by simple scaling laws. In the cas
isotropic percolation, this phenomenon was first conjectu
by Rammalet al. @6# as well as by deArcangeliset al. @7#. In
the meantime these results have been substantiated by
theoretic renormalization-group studies@8,9# and numerical
simulations@6,10,11#. Recently, Stenull and Janssen@12# in-
vestigated the directed case. By employing field-theor
methods they determined the critical exponents of the m
ments of the current distribution. Their results clearly in
cate multifractality. The purpose of the present paper is
verify these predictions quantitatively by extensive nume
cal simulations. To this end we analyze a random-diode
work as shown in Fig. 1, which is a special case of the mo
considered in@12#. Again we would like to stress that multi
fractality is not observed as long as one is concerned ex
sively with the underlying DP process. An additional pr
cess, here the transport of electrical currents, is necessar
the emergence of multifractality.

The moments of the current distribution in
d11-dimensional DP process are defined as follows. Le
denote byxi the coordinate along the distinguished directi
~5time! and byx' the vector ofd perpendicular coordinate
~5space!. An important quantity in the theory of DP is th
pair-connectedness functionC(xi ,x' ;xi8 ,x'8 ), which is the
probability to find a conducting path running from the po
(xi ,x') to the point (xi8 ,x'8 ). The union of all possible path
in a given realization of conducting and nonconducti
bonds is called thebackboneof the correlation function.
Note that the backbone is invariant under reversal of all
odes. In the field-theoretic framework this invariance
known as the so-called rapidity reversal symmetry.

We now assume the diodes to be ideal in the sense
they are perfectly isolating if the applied voltage is negat
while they have a fixed resistanceR if the voltage is positive.
If we apply an external voltage at the two pointsx
5(xi ,x') and x85(xi8 ,x') there will be a current running
on the backbone which can be computed by solving Kir
hoff’s laws. Obviously the currents are distributed in a no
trivial way, especially when the backbone consists of ma
nested loops, as shown in Fig. 2. This current distribution
multifractal properties which can be studied by consider
the moments

M l 5(
b

~ I b /I !2l , ~2!

TABLE I. Estimates for the critical exponents of DP.

Exponent d53 d52 d51

b 0.81~1! 0.583~4! 0.276 486~8!

n i 1.105~5! 1.295~6! 1.733 847~6!

n' 0.581~5! 0.733~4! 1.096 584~4!
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where the sum runs over all bondsb of the backbone while
I b and I denote the current passing bondb and the total
current, respectively. Each of these moments has a spe
physical meaning. For example,M0 is just the total number
of bonds of the backbone whileM1 is the total resistance
between the two points in units ofR. M2 is the second cu-
mulant of the resistance fluctuations and may be conside
as a measure of the noise in a given realization. Finally,M`

is the number of so-called red bonds which carry the f
current I. These bonds play a special role since they
shared by all possible paths. At criticality the moments ob
a power-law@12#

M l ;~xi82xi!
c l /n i. ~3!

Multifractal behavior manifests itself in a nonlinear depe
dence of the exponentsc l on their indexl . The exponents
c l , just as the geometrical exponents compiled in Eq.~1!,
are known in a two-loop approximation. Thus, at least
principle, we can gather thee expansion for the exponent
c l /n i from the literature. Thise expansion, however, would
hardly be useful for comparison to our numerical data
cause it is valid only asymptotically in the vicinity ofdc
54. To produce reliable predictions ford53 or evend52
the e expansion has to be improved by incorporating ad
tional information. Here, we carry out a so-called ration
approximation. To be specific, we incorporate the rigoro
featurec l /n i(d50)51 by supplementing thee expansion
with an appropriate third-order term. The so-obtained res
reads:

c l

n i
512e~42e!H al 1eFbl 1cl lnS 4

3D G J 1O~e4!, ~4!

where theal , bl , andcl arel -dependent coefficients tak
ing the values listed in Table II.

FIG. 2. Example of the current distribution on a backbone ru
ning from x to x8. The thickness of the bonds represents the int
sity of the current.

TABLE II. The coefficients al , bl , and cl appearing in
Eq. ~4!.

l 0 1 2 3 4

al 2
1

48
1

96
7

384
31

1536
127

6144

bl 2
109

13824
115

27648
149053

19906560
11739503

1337720832
23399081351

2476694568960

cl 2
161

6912
47

13824
211

110592 2
491

1769472 2
17377

9437184
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In order to estimate the exponents numerically, we de
mine the current distribution averaging over an ensemble
5000 independent realizations of a conducting backbon
311, 211, and 111 dimensions. In principle the curren
distribution can be computed by solving Kirchhoff’s laws
all nodes of the backbone. In the case of isotropic perc
tion, where the network consists only of resistors, one
tains a set of linear equations which can be solved exactly
the present case of a diode-resistor network, however,
resulting equations arenonlinear making it impossible to
compute the currents analytically. Thus, in order to comp
the currents, we have to apply an iterative approximat
procedure. To this end each site of the backbone networ
connected to a grounded capacitorC. For a given set of
voltages at the lattice sites, we can compute the actual
ference between incoming and outgoing currents. This
ference then changes the voltage of the capacitor at sitei by

dUi

dt
5

1

C
~ I incom.2I outgo.!. ~5!

After sufficiently long time this nonlinear dynamical sy
tem reaches a stationary state where incoming and outg
currents balance each other. Therefore, by iterating Eq.~5!,
the stationary current distribution can be approximated ac
rately, mainly limited by the available CPU time and th
precision of floating-point arithmetics. Moreover, the conv
gence during the iteration procedure can be controlled ea
by monitoring the quantity(buDI bu, which should tend to
zero as the stationary state is approached. Using Newt
iteration scheme, this quantity actually decreases unt
reaches a value of about 10210, which is essentially deter
mined by the limited machine precision. At this point w
stop the iteration procedure and compute the momentsM l ,

FIG. 3. Simulation results for the momentsM l as a function of
time in 111, 211, and 311 dimensions. The data points for 211
and 311 dimensions are shifted vertically by a factor of 10 a
100, respectively. Each group of lines shows the mome
M0 , . . . ,M5 from top to bottom. The data points forM4 and M5

are almost identical.
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assuming that the errors caused by the iteration procedure
much smaller than the statistical and finite-size errors ge
ated by the DP process itself.

In the simulations we observe that the average size of
backbone increases rapidly withxi82xi , especially in 311
dimensions. While the numerical effort for generating co
ducting backbones between two given points plays a mi
role, the algorithm is mainly limited by the CPU time need
for the dynamical approximation and by the memory cap
ity for storing the configuration of the backbone, the cu
rents, and the voltages. Because of these limitations,
could only go up to distances ofxi82xi<75 in 311, 211,
and 111 dimensions. Clearly, in this limited range corre
tions to scaling still play an important role. Nevertheless,
find that the moments exhibit very clean power laws~see
Fig. 3!, which allows us to estimate the critical exponentsc l

in the limit xi82xi→` by standard extrapolation technique
These estimates are summarized in Table III.

Figure 4 shows the field-theoretic estimates as given
Eq. ~4! compared to the numerical results. The error b
include the statistical error of the simulation combined w
the expected error of the extrapolation procedure. In 311
dimensions we find excellent agreement. The numerical

ts

TABLE III. Numerical estimates of the critical exponents.

Exponent d53 d52 d51

c0 /n i 1.10~2! 1.24~3! 1.32~3!

c1 /n i 0.95~1! 0.88~2! 0.82~2!

c2 /n i 0.92~1! 0.81~3! 0.67~3!

c3 /n i 0.91~1! 0.79~3! 0.63~3!

c4 /n i 0.91~1! 0.78~3! 0.62~3!

FIG. 4. Comparison of simulation and field theory ford52
~top! andd53 ~bottom!. The field-theoretic results are indicated b
squares. The numerical ones are symbolized by diamonds with e
bars.
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ues and the field-theoretic predictions almost coincide.
expected, the agreement is less pronounced in 211 dimen-
sions. The analytic estimates lie slightly outside the er
bars of the simulations. Though not quantitatively corre
field theory yet predicts the right shape of the dependenc
c l /n i on l . In 111 dimensions, the field theory fails t
predict the numerical values of the multifractal expone
accurately. We therefore refrain from showing the respec
graph. All in all, our simulations support the validity of th
field-theoretic results, at least for dimensions to that the
expansion can be continued reliably. Our simulations clea
confirm the existence of multifractality in current distrib
tions running on DP clusters.

As in the field-theoretic case, we can check the con
tency of our results. For example, as shown in@12#, the ze-
roth moment in a (d11)-dimensional system, which is jus
the mass of the backbone, can be expressed in terms o
backbone dimensionDB5d1122b/n' by

c05n'~DB211z!, ~6!

wherez5n i /n' . Using the values listed in Table I, we ob
tain for c0 /n i the values 1.11 in three, 1.23 in two, an
1.307 in one dimension, respectively. These values ar
perfect agreement with the estimates listed in Table III.
also note that for increasingl the estimates forc l tend to
the predicted valuec`51 which describes the scaling of re
bonds@13#.

To summarize, we have studied the current distribution
a random-diode network at the critical point by numeric
s
e,

.
nd
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simulations. Our findings confirm recent field-theoretic r
sults, supporting that currents running on a critical DP clus
indeed show multifractal behavior.

We would like to point out that a random-diode netwo
might be a good candidate for an experimental realization
directed percolation. In particular the total resistanceM1 is
easy to measure. In an experimental realization various
alized assumptions of the model shown in Fig. 1 can
relaxed. For example, not all diodes need to be polari
along the distinguished direction, rather it is sufficient f
them to bepreferentially orientedin a statistical sense. In
addition, the resistance of conducting diodes may be stoc
tically distributed. Nevertheless the critical exponents
such a system at the transition are expected to be the sam
in DP. Even inhomogeneities, which cannot be avoided
any experiment, are not expected to play a role since t
would result into anannealednoise which is irrelevant unde
renormalization-group transformations~see Ref.@14#!. Be-
cause of these favorable properties, random-diode netw
are particularly suitable for a possible experimental reali
tion of directed percolation. It should be emphasized that
far no experiment is known where the critical exponents
directed percolation could be verified in a reliable w
@14,15#. Therefore, the experimental realization of a rando
diode network would be a particularly challenging task.
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